
Experiences Utilizing CPUs and GPUs
for Computation Simultaneously
on a Heterogeneous Node
COEPP 2017
August 22-24, 2017

Olga Pearce
Lawrence Livermore National Laboratory

http://people.llnl.gov/olga

This work performed under the auspices of
the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Con-
tract. DE-AC52-07NA27344.

LLNL-PRES-737016 Slide 1



Lawrence Livermore National Laboratory 

Sierra node is a POWER9 2 Socket Server

2x POWER9

5%
FLOPS

I Use the CPUs
as well

4x Volta

95%
FLOPS

I Use the GPUs
effectively

LLNL-PRES-737016 Slide 2



Lawrence Livermore National Laboratory 

Sierra node is a POWER9 2 Socket Server

2x POWER9
5%
FLOPS

I Use the CPUs
as well

4x Volta
95%
FLOPS

I Use the GPUs
effectively

LLNL-PRES-737016 Slide 2



Lawrence Livermore National Laboratory 

Sierra node is a POWER9 2 Socket Server

2x POWER9
5%
FLOPS

I Use the CPUs
as well

4x Volta
95%
FLOPS

I Use the GPUs
effectively

LLNL-PRES-737016 Slide 2



Lawrence Livermore National Laboratory 

Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPU

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Single MPI task per GPU

← launching big kernels?

2. Single MPI task per core

← launching many small kernels?
I Multiple MPI tasks per GPU with Multi-Process Service (MPS)

3. Heterogeneous MPI tasks

← when 1 core sufficient to drive GPU?
I Single MPI task per core
I Some compute, some ‘drive’ the GPU

⇒ Hard to project performance to future hardware

LLNL-PRES-737016 Slide 3



Lawrence Livermore National Laboratory 

Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Single MPI task per GPU

← launching big kernels?
2. Single MPI task per core

← launching many small kernels?
I Multiple MPI tasks per GPU with Multi-Process Service (MPS)

3. Heterogeneous MPI tasks

← when 1 core sufficient to drive GPU?
I Single MPI task per core
I Some compute, some ‘drive’ the GPU

⇒ Hard to project performance to future hardware

LLNL-PRES-737016 Slide 3



Lawrence Livermore National Laboratory 

Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPU

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Single MPI task per GPU

← launching big kernels?

2. Single MPI task per core

← launching many small kernels?
I Multiple MPI tasks per GPU with Multi-Process Service (MPS)

3. Heterogeneous MPI tasks

← when 1 core sufficient to drive GPU?
I Single MPI task per core
I Some compute, some ‘drive’ the GPU

⇒ Hard to project performance to future hardware

LLNL-PRES-737016 Slide 3



Lawrence Livermore National Laboratory 

Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPU

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Single MPI task per GPU

← launching big kernels?

2. Single MPI task per core

← launching many small kernels?

I Multiple MPI tasks per GPU with Multi-Process Service (MPS)

3. Heterogeneous MPI tasks

← when 1 core sufficient to drive GPU?
I Single MPI task per core
I Some compute, some ‘drive’ the GPU

⇒ Hard to project performance to future hardware

LLNL-PRES-737016 Slide 3



Lawrence Livermore National Laboratory 

Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPU

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Single MPI task per GPU

← launching big kernels?

2. Single MPI task per core

← launching many small kernels?

I Multiple MPI tasks per GPU with Multi-Process Service (MPS)
3. Heterogeneous MPI tasks

← when 1 core sufficient to drive GPU?
I Single MPI task per core
I Some compute, some ‘drive’ the GPU

⇒ Hard to project performance to future hardware

LLNL-PRES-737016 Slide 3



Lawrence Livermore National Laboratory 

Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPU

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Single MPI task per GPU

← launching big kernels?

2. Single MPI task per core

← launching many small kernels?

I Multiple MPI tasks per GPU with Multi-Process Service (MPS)
3. Heterogeneous MPI tasks

← when 1 core sufficient to drive GPU?

I Single MPI task per core

I Some compute, some ‘drive’ the GPU
⇒ Hard to project performance to future hardware

LLNL-PRES-737016 Slide 3



Lawrence Livermore National Laboratory 

Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPU

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Single MPI task per GPU

← launching big kernels?

2. Single MPI task per core

← launching many small kernels?

I Multiple MPI tasks per GPU with Multi-Process Service (MPS)
3. Heterogeneous MPI tasks

← when 1 core sufficient to drive GPU?

I Single MPI task per core
I Some compute, some ‘drive’ the GPU

⇒ Hard to project performance to future hardware

LLNL-PRES-737016 Slide 3



Lawrence Livermore National Laboratory 

Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPU

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Single MPI task per GPU ← launching big kernels?
2. Single MPI task per core ← launching many small kernels?

I Multiple MPI tasks per GPU with Multi-Process Service (MPS)
3. Heterogeneous MPI tasks ← when 1 core sufficient to drive GPU?

I Single MPI task per core
I Some compute, some ‘drive’ the GPU

⇒ Hard to project performance to future hardware

LLNL-PRES-737016 Slide 3



Lawrence Livermore National Laboratory 

Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPU

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Single MPI task per GPU ← launching big kernels?
2. Single MPI task per core ← launching many small kernels?

I Multiple MPI tasks per GPU with Multi-Process Service (MPS)
3. Heterogeneous MPI tasks ← when 1 core sufficient to drive GPU?

I Single MPI task per core
I Some compute, some ‘drive’ the GPU

⇒ Hard to project performance to future hardware

LLNL-PRES-737016 Slide 3



Lawrence Livermore National Laboratory 

Heterogeneous MPI tasks
CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Control code
I Some MPI processes ‘drive’ the GPUs
I Other MPI processes compute on the CPU cores
I Be careful about the CPU core/GPU binding!

2. Memory allocation

I Allocate the memory according to the task of the particular CPU core
I This was fairly straight-forward for a spatially decomposed MPI

application where each MPI process owns its data

3. Loop execution

I Portability: same source code?
I Proof of concept implementation in ARES using RAJA

4. Communication

I Haven’t explored GPU direct yet

LLNL-PRES-737016 Slide 4



Lawrence Livermore National Laboratory 

Heterogeneous MPI tasks
CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Control code
I Some MPI processes ‘drive’ the GPUs
I Other MPI processes compute on the CPU cores
I Be careful about the CPU core/GPU binding!

2. Memory allocation
I Allocate the memory according to the task of the particular CPU core
I This was fairly straight-forward for a spatially decomposed MPI

application where each MPI process owns its data

3. Loop execution

I Portability: same source code?
I Proof of concept implementation in ARES using RAJA

4. Communication

I Haven’t explored GPU direct yet

LLNL-PRES-737016 Slide 4



Lawrence Livermore National Laboratory 

Heterogeneous MPI tasks
CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Control code
I Some MPI processes ‘drive’ the GPUs
I Other MPI processes compute on the CPU cores
I Be careful about the CPU core/GPU binding!

2. Memory allocation
I Allocate the memory according to the task of the particular CPU core
I This was fairly straight-forward for a spatially decomposed MPI

application where each MPI process owns its data
3. Loop execution

I Portability: same source code?
I Proof of concept implementation in ARES using RAJA

4. Communication

I Haven’t explored GPU direct yet

LLNL-PRES-737016 Slide 4



Lawrence Livermore National Laboratory 

Heterogeneous MPI tasks
CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1. Control code
I Some MPI processes ‘drive’ the GPUs
I Other MPI processes compute on the CPU cores
I Be careful about the CPU core/GPU binding!

2. Memory allocation
I Allocate the memory according to the task of the particular CPU core
I This was fairly straight-forward for a spatially decomposed MPI

application where each MPI process owns its data
3. Loop execution

I Portability: same source code?
I Proof of concept implementation in ARES using RAJA

4. Communication
I Haven’t explored GPU direct yet

LLNL-PRES-737016 Slide 4



Lawrence Livermore National Laboratory 

ARES is a massively parallel, multi-dimensional,
multi-physics code [from Brian Ryujin’s slides]

Physics Capabilities:
I ALE-AMR Hydrodynamics
I High-order Eulerian Hydrodynamics
I Elastic-Plastic flow
I 3T plasma physics
I High-Explosive modeling
I Diffusion, SN Radiation

I Particulate flow
I Laser ray-tracing
I MHD
I Dynamic mixing
I Non-LTE opacities

Applications:
I ICF modeling
I Pulsed power
I NIF Debris
I High-Explosive experiments

LLNL-PRES-737016 Slide 5



Lawrence Livermore National Laboratory 

Heterogeneous

memory allocation
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

I Differentiate memory use by context
I Malloc - CPU control code
I cudaMallocManaged(UM) - mesh data (accessed on CPU & GPU)
I cudaMalloc (cnmem memory pools) - Temporary GPU data

I Use control code to inject additional context

I If the MPI process is ‘driving’ the GPU, do the above
I If the MPI process is executing loops on the CPU core, allocate

everything on the CPU

I Gotchas

I Dependencies may assume that ‘USE_CUDA’ == allocate on GPUs
I Touching UM from the CPU-only MPI process will slow things down

LLNL-PRES-737016 Slide 6



Lawrence Livermore National Laboratory 

Heterogeneous
memory allocation
in ARES CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

I Differentiate memory use by context
I Malloc - CPU control code
I cudaMallocManaged(UM) - mesh data (accessed on CPU & GPU)
I cudaMalloc (cnmem memory pools) - Temporary GPU data

I Use control code to inject additional context

I If the MPI process is ‘driving’ the GPU, do the above
I If the MPI process is executing loops on the CPU core, allocate

everything on the CPU

I Gotchas

I Dependencies may assume that ‘USE_CUDA’ == allocate on GPUs
I Touching UM from the CPU-only MPI process will slow things down

LLNL-PRES-737016 Slide 6



Lawrence Livermore National Laboratory 

Heterogeneous
memory allocation
in ARES CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

I Differentiate memory use by context
I Malloc - CPU control code
I cudaMallocManaged(UM) - mesh data (accessed on CPU & GPU)
I cudaMalloc (cnmem memory pools) - Temporary GPU data

I Use control code to inject additional context
I If the MPI process is ‘driving’ the GPU, do the above
I If the MPI process is executing loops on the CPU core, allocate

everything on the CPU

I Gotchas

I Dependencies may assume that ‘USE_CUDA’ == allocate on GPUs
I Touching UM from the CPU-only MPI process will slow things down

LLNL-PRES-737016 Slide 6



Lawrence Livermore National Laboratory 

Heterogeneous
memory allocation
in ARES CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

I Differentiate memory use by context
I Malloc - CPU control code
I cudaMallocManaged(UM) - mesh data (accessed on CPU & GPU)
I cudaMalloc (cnmem memory pools) - Temporary GPU data

I Use control code to inject additional context
I If the MPI process is ‘driving’ the GPU, do the above
I If the MPI process is executing loops on the CPU core, allocate

everything on the CPU
I Gotchas

I Dependencies may assume that ‘USE_CUDA’ == allocate on GPUs
I Touching UM from the CPU-only MPI process will slow things down

LLNL-PRES-737016 Slide 6



Lawrence Livermore National Laboratory 

Heterogeneous

loop execution
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1: RAJA::forall<AresPolicy>(. . . , kernel);

I AresPolicy: not thread safe, thread safe, etc.

I AresArchPolicy: At runtime, select the appropriate policy according
to where want to execute (future: MultiPolicy in RAJA)

1: if (run_on_gpu) then
2: //RAJA backend: GPU specific (CUDA, OpenMP)
3: typedef DynamicPolicy<AresPolicy, GPU> AresArchPolicy;
4: RAJA::forall<AresArchPolicy>(. . . , kernel);
5: else
6: //RAJA backend: CPU specific (Serial, OpenMP)
7: typedef DynamicPolicy<AresPolicy, CPU> AresArchPolicy;
8: RAJA::forall<AresArchPolicy>(. . . , kernel);
9: end if

LLNL-PRES-737016 Slide 7



Lawrence Livermore National Laboratory 

Heterogeneous
loop execution
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1: RAJA::forall<AresPolicy>(. . . , kernel);

I AresPolicy: not thread safe, thread safe, etc.
I AresArchPolicy: At runtime, select the appropriate policy according

to where want to execute (future: MultiPolicy in RAJA)

1: if (run_on_gpu) then
2: //RAJA backend: GPU specific (CUDA, OpenMP)
3: typedef DynamicPolicy<AresPolicy, GPU> AresArchPolicy;
4: RAJA::forall<AresArchPolicy>(. . . , kernel);
5: else
6: //RAJA backend: CPU specific (Serial, OpenMP)
7: typedef DynamicPolicy<AresPolicy, CPU> AresArchPolicy;
8: RAJA::forall<AresArchPolicy>(. . . , kernel);
9: end if

LLNL-PRES-737016 Slide 7



Lawrence Livermore National Laboratory 

Heterogeneous
loop execution
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1: RAJA::forall<AresPolicy>(. . . , kernel);

I AresPolicy: not thread safe, thread safe, etc.
I AresArchPolicy: At runtime, select the appropriate policy according

to where want to execute (future: MultiPolicy in RAJA)

1: if (run_on_gpu) then
2: //RAJA backend: GPU specific (CUDA, OpenMP)
3: typedef DynamicPolicy<AresPolicy, GPU> AresArchPolicy;
4: RAJA::forall<AresArchPolicy>(. . . , kernel);
5: else
6: //RAJA backend: CPU specific (Serial, OpenMP)
7: typedef DynamicPolicy<AresPolicy, CPU> AresArchPolicy;
8: RAJA::forall<AresArchPolicy>(. . . , kernel);
9: end if

LLNL-PRES-737016 Slide 7



Lawrence Livermore National Laboratory 

Heterogeneous

domain decomposition
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1MPI/GPU

4MPI/GPU + MPS Heterogeneous

I Use hierarchical decomposition for Heterogeneous approach
I Decomposition impacts memory accesses

LLNL-PRES-737016 Slide 8



Lawrence Livermore National Laboratory 

Heterogeneous

domain decomposition
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1MPI/GPU 4MPI/GPU + MPS

Heterogeneous

I Use hierarchical decomposition for Heterogeneous approach
I Decomposition impacts memory accesses

LLNL-PRES-737016 Slide 8



Lawrence Livermore National Laboratory 

Heterogeneous
domain decomposition
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1MPI/GPU 4MPI/GPU + MPS Heterogeneous

I Use hierarchical decomposition for Heterogeneous approach
I Decomposition impacts memory accesses

LLNL-PRES-737016 Slide 8



Lawrence Livermore National Laboratory 

Heterogeneous
domain decomposition
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1MPI/GPU 4MPI/GPU + MPS Heterogeneous

I Use hierarchical decomposition for Heterogeneous approach
I Decomposition impacts memory accesses

LLNL-PRES-737016 Slide 8



Lawrence Livermore National Laboratory 

Performance comparison
I ARES, 3D Sedov problem
I rzhasgpu, CUDA RAJA backend1

I Baseline: 1MPI/GPU

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

−20

0

20

40

0

Problem size (zones)

Im
pr

ov
em

en
t(

%
)

4 MPI/GPU, MPS
Hetero

I Size of inner-loop dimension impacts performance

1All results generated with pre-release versions of IBM compilers; improvements in performance expected in future releases

LLNL-PRES-737016 Slide 9



Lawrence Livermore National Laboratory 

Performance comparison
I ARES, 3D Sedov problem
I rzhasgpu, CUDA RAJA backend1

I Baseline: 1MPI/GPU

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

−20

0

20

40

0

Problem size (zones)

Im
pr

ov
em

en
t(

%
)

4 MPI/GPU, MPS
Hetero

I Size of inner-loop dimension impacts performance

1All results generated with pre-release versions of IBM compilers; improvements in performance expected in future releases

LLNL-PRES-737016 Slide 9



Lawrence Livermore National Laboratory 

Performance comparison
I ARES, 3D Sedov problem
I rzhasgpu, CUDA RAJA backend1

I Baseline: 1MPI/GPU

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

−20

0

20

40

0

Problem size (zones)

Im
pr

ov
em

en
t(

%
)

4 MPI/GPU, MPS
Hetero

I Size of inner-loop dimension impacts performance
1All results generated with pre-release versions of IBM compilers; improvements in performance expected in future releases

LLNL-PRES-737016 Slide 9



Lawrence Livermore National Laboratory 

Best: 1MPI/GPU

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

0

20

40

0

Problem size (zones)

Im
pr

ov
em

en
t(

%
)

4 MPI/GPU, MPS
Hetero

I Baseline: 1MPI/GPU
I When inner-loop dimension is large

I Memory use is optimal with 1MPI/GPU (4MPI/GPU results in smaller
inner-loop dimension)

I Can’t take a small enough chunk of work to give to the CPU

LLNL-PRES-737016 Slide 10



Lawrence Livermore National Laboratory 

Best: Heterogeneous

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

0

10

20

30

40

0

Problem size (zones)

Im
pr

ov
em

en
t(

%
)

Hetero

I Memory use the same as for 1MPI/GPU (slice in Y dimension)
I When Y dim. is large, can give smaller portions of work to CPU

I Right now, only give 1-2% of work to the CPU

I __host__ __device__ decorated lambdas are significantly slower
when running on the CPU because nvcc passes the lambda back to
the host compiler wrapped in a std::function object.

LLNL-PRES-737016 Slide 11



Lawrence Livermore National Laboratory 

Best: Heterogeneous

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

0

10

20

30

40

0

Problem size (zones)

Im
pr

ov
em

en
t(

%
)

Hetero

I Memory use the same as for 1MPI/GPU (slice in Y dimension)
I When Y dim. is large, can give smaller portions of work to CPU
I Right now, only give 1-2% of work to the CPU

I __host__ __device__ decorated lambdas are significantly slower
when running on the CPU because nvcc passes the lambda back to
the host compiler wrapped in a std::function object.

LLNL-PRES-737016 Slide 11



Lawrence Livermore National Laboratory 

Best: 4MPI/GPU+MPS

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

0

10

20

30

40

0

Problem size (zones)

Im
pr

ov
em

en
t(

%
)

4 MPI/GPU, MPS

I In all of these cases, ARES decomposition didn’t cut further in X
dimensions because Y and Z dimensions were large

I Memory use the same as for 1MPI/GPU

I MPS may be beneficial if we use a special hierarchical
decomposition

I Performance with MPS keeps changing - keep reevaluating

LLNL-PRES-737016 Slide 12



Lawrence Livermore National Laboratory 

Best: 4MPI/GPU+MPS

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

0

10

20

30

40

0

Problem size (zones)

Im
pr

ov
em

en
t(

%
)

4 MPI/GPU, MPS

I In all of these cases, ARES decomposition didn’t cut further in X
dimensions because Y and Z dimensions were large

I Memory use the same as for 1MPI/GPU
I MPS may be beneficial if we use a special hierarchical

decomposition

I Performance with MPS keeps changing - keep reevaluating

LLNL-PRES-737016 Slide 12



Lawrence Livermore National Laboratory 

Best: 4MPI/GPU+MPS

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

0

10

20

30

40

0

Problem size (zones)

Im
pr

ov
em

en
t(

%
)

4 MPI/GPU, MPS

I In all of these cases, ARES decomposition didn’t cut further in X
dimensions because Y and Z dimensions were large

I Memory use the same as for 1MPI/GPU
I MPS may be beneficial if we use a special hierarchical

decomposition
I Performance with MPS keeps changing - keep reevaluating

LLNL-PRES-737016 Slide 12



Lawrence Livermore National Laboratory 

Heterogeneous
load balancing CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

I ‘Direction’ of split certainly impacts memory performance
I Have to take into consideration memory access overhead, data

transfer overhead, kernel launch overhead, etc.

Related work:
Heterogeneous task scheduling for accelerated OpenMP. Thomas R.W.
Scogland, Barry Rountree, Wu-Chun Feng, Bronis R. de Supinski.
Parallel & Distributed Processing Symposium (IPDPS), May 2012.

I Proposed changes to OpenMP which allow task scheduling on
both the CPU and GPU

I Calculated the ratio for splitting the iterations via a linear program

LLNL-PRES-737016 Slide 13



Lawrence Livermore National Laboratory 

Heterogeneous
load balancing CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

I ‘Direction’ of split certainly impacts memory performance
I Have to take into consideration memory access overhead, data

transfer overhead, kernel launch overhead, etc.

Related work:
Heterogeneous task scheduling for accelerated OpenMP. Thomas R.W.
Scogland, Barry Rountree, Wu-Chun Feng, Bronis R. de Supinski.
Parallel & Distributed Processing Symposium (IPDPS), May 2012.

I Proposed changes to OpenMP which allow task scheduling on
both the CPU and GPU

I Calculated the ratio for splitting the iterations via a linear program

LLNL-PRES-737016 Slide 13



Lawrence Livermore National Laboratory 

Conclusions
CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

I Proof of concept implementa-
tion for utilizing the GPUs and
all CPU cores to perform loop
computation in ARES

I Performance portability courtesy of RAJA
(same source code for CPU and GPU)

I Divide work via domain decomposition
I Load balancing between the CPUs and GPUs is non-trivial
I Compared performance of the 1MPI/GPU implementation,

heterogeneous implementation, and 4MPI/GPU+MPS
I Performance with MPS is likely to change
I Memory access pattern dominates performance
I ‘Square’ domains may no longer be optimal

LLNL-PRES-737016 Slide 14


